Molecular Characterization of the a-Glucosidase Gene (malA) from the Hyperthermophilic Archaeon Sulfolobus solfataricus
نویسندگان
چکیده
Acidic hot springs are colonized by a diversity of hyperthermophilic organisms requiring extremes of temperature and pH for growth. To clarify how carbohydrates are consumed in such locations, the structural gene (malA) encoding the major soluble a-glucosidase (maltase) and flanking sequences from Sulfolobus solfataricus were cloned and characterized. This is the first report of an a-glucosidase gene from the archaeal domain. malA is 2,083 bp and encodes a protein of 693 amino acids with a calculated mass of 80.5 kDa. It is flanked on the 5* side by an unusual 1-kb intergenic region. Northern blot analysis of the malA region identified transcripts for malA and an upstream open reading frame located 5* to the 1-kb intergenic region. The malA transcription start site was located by primer extension analysis to a guanine residue 8 bp 5* of the malA start codon. Gel mobility shift analysis of the malA promoter region suggests that sequences 3* to position 233, including a consensus archaeal TATA box, play an essential role in malA expression. malA homologs were detected by Southern blot analysis in other S. solfataricus strains and in Sulfolobus shibatae, while no homologs were evident in Sulfolobus acidocaldarius, lending further support to the proposed revision of the genus Sulfolobus. Phylogenetic analyses indicate that the closest S. solfataricus a-glucosidase homologs are of mammalian origin. Characterization of the recombinant enzyme purified from Escherichia coli revealed differences from the natural enzyme in thermostability and electrophoretic behavior. Glycogen is a substrate for the recombinant enzyme. Unlike maltose hydrolysis, glycogen hydrolysis is optimal at the intracellular pH of the organism. These results indicate a unique role for the S. solfataricus a-glucosidase in carbohydrate metabolism.
منابع مشابه
Molecular characterization of the alpha-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus.
Acidic hot springs are colonized by a diversity of hyperthermophilic organisms requiring extremes of temperature and pH for growth. To clarify how carbohydrates are consumed in such locations, the structural gene (malA) encoding the major soluble alpha-glucosidase (maltase) and flanking sequences from Sulfolobus solfataricus were cloned and characterized. This is the first report of an alpha-gl...
متن کاملCoordinate transcriptional control in the hyperthermophilic archaeon Sulfolobus solfataricus.
The existence of a global gene regulatory system in the hyperthermophilic archaeon Sulfolobus solfataricus is described. The system is responsive to carbon source quality and acts at the level of transcription to coordinate synthesis of three physically unlinked glycosyl hydrolases implicated in carbohydrate utilization. The specific activities of three enzymes, an alpha-glucosidase (malA), a b...
متن کاملExtragenic pleiotropic mutations that repress glycosyl hydrolase expression in the hyperthermophilic archaeon Sulfolobus solfataricus.
The hyperthermophilic archaeon Sulfolobus solfataricus employs a catabolite repression-like regulatory system to control enzymes involved in carbon and energy metabolism. To better understand the basis of this system, spontaneous glycosyl hydrolase mutants were isolated using a genetic screen for mutations, which reduced expression of the lacS gene. The specific activities of three glycosyl hyd...
متن کاملProperties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing.
A gene (ssg) encoding a putative glucoamylase in a hyperthermophilic archaeon, Sulfolobus solfataricus, was cloned and expressed in Escherichia coli, and the properties of the recombinant protein were examined in relation to the glucose production process. The recombinant glucoamylase was extremely thermostable, with an optimal temperature at 90 degrees C. The enzyme was most active in the pH r...
متن کاملStability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus.
Archaea-like bacteria are prokaryotes but, in contrast, use eukaryotic-like systems for key aspects of DNA, RNA, and protein metabolism. mRNA is typically unstable in bacteria and stable in eukaryotes, but little information is available about mRNA half-lives in archaea. Because archaea are generally insensitive to antibiotics, examination of mRNA stability in the hyperthermophile, Sulfolobus s...
متن کامل